jueves, 19 de mayo de 2011

ELEMENTOS RADIACTIVOS

                                  INTRODUCCION


GRUPOPO:     _Valera Montalban
                                     _Herrera Ruesta
                                     _Zavaleta Vizlao
                                     _Jayo Hamanckay

CURSO:  BIOLOGIA(CTA)

PROF:   Rosa Guillermo

TEMA:  elementos radiactivos

AÑO Y SECC:  4to *D*

I.E:  Julio  C.  Tello



                  ELEMENTOS RADIACTIVOS


                             



   
La radiactividad (o radioactividad) ioniza el medio que atraviesa.Una excepción lo constituye el neutrón, que no posee carga, pero ioniza la materia en forma indirecta. En las desintegraciones radiactivas se tienen varios tipos de radiación: alfa, beta, gamma y neutrones.
La radiactividad puede considerarse un fenómeno físico natural por el cual algunos cuerpos o elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas fotográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, etc. Debido a esa capacidad, se les suele denominar radiaciones ionizantes (en contraste con las no ionizantes). Las radiaciones emitidas pueden ser electromagnéticas, en forma de rayos X o rayos gamma, o bien corpusculares, como pueden ser núcleos de helio, electrones o positrones, protones u otras. En resumen, es un fenómeno que ocurre en los núcleos de ciertos elementos, que son capaces de transformarse en núcleos de átomos de otros elementos.
La radiactividad es una propiedad de los isótopos que son "inestables", es decir, que se mantienen en un estado excitado en sus capas electrónicas o nucleares, con lo que, para alcanzar su estado fundamental, deben perder energía. Lo hacen en emisiones electromagnéticas o en emisiones de partículas con una determinada energía cinética. Esto se produce variando la energía de sus electrones (emitiendo rayos X) o de sus nucleones (rayo gamma) o variando el isótopo (al emitir desde el núcleo electrones, positrones, neutrones, protones o partículas más pesadas), y en varios pasos sucesivos, con lo que un isótopo pesado puede terminar convirtiéndose en uno mucho más ligero, como el uranio que, con el transcurrir de los siglos, acaba convirtiéndose en plomo.
La radiactividad se aprovecha para la obtención de energía nuclear, se usa en medicina (radioterapia y radiodiagnóstico) y en aplicaciones industriales (medidas de espesores y densidades,        

Marie Curie, Marja Skłodowska

Maria Skłodowska nació el 7 de noviembre de 1867 en Varsovia. Era la quinta hija de Władysław Skłodowski, profesor de física y matemáticas de liceo, al igual que su abuelo, y de Bronisława Boguska, quien fue maestra, pianista y cantante.
Maria era la menor de cinco hijos: Zofia (1862), Józef (1863), Bronisława (1865), Helena (1866) y finalmente ella, Maria (1867).
En aquel tiempo, la mayor parte de Polonia estaba ocupada por Rusia, que, tras varias revueltas nacionalistas sofocadas violentamente, había impuesto su lengua y sus costumbres. Junto con su hermana Helena, Maria asistía a clases clandestinas ofrecidas en un pensionado en las que se enseñaba la cultura polaca.[1]
Sus primeros años estuvieron marcados por la penosa muerte de su hermana Zofia como consecuencia del tifus y, dos años más tarde, la de su madre a causa de una tuberculosis. Esos eventos hicieron que Maria dejara la religión católica romana y se volviera agnóstica.[2]
Entre sus intereses destacaba la pasión por la lectura, especialmente en la historia natural y la física (Maria muestra su afición por la lectura a la edad de cuatro años, edad a la que ya leía perfectamente). En la secundaria fue siempre la primera alumna de su clase, y se destacó por influir en sus compañeras el entusiasmo por el trabajo. Ruso, polaco, alemán o francés eran algunas de las lenguas que Maria dominaba. Más adelante se interesaría por la física y se graduaría


 EL ÁTOMO NUCLEAR

Se define el número atómico del elemento como la cantidad de protones que contiene el núcleo en uno de sus átomos.
La masa atómica es el peso comparado de un núcleo atómico. Su unidad es la u.m.a (unidad de masa atómica) que se define como la doceava parte del peso del carbono –12. Un elemento es él y no otro por su número atómico. Así, el uranio lo es porque tiene 92 protones; si no fuera así dejaría de ser uranio. Sin embargo, un mismo elemento puede tener átomos de distinto número de neutrones. A los núcleos que tienen igual número de protones y distinto el de neutrones se les denominas isótopos. La existencia de isótopos de un mismo elemento es una razón por la que los pesos atómicos expresados en las tablas químicas no son números enteros.
Una anotación aceptada para indicar el número y la masa atómica de un núcleo es colocando la masa atómica en la parte superior izquierda del símbolo del elemento, y el número atómico en la inferior izquierda.
El número que indica la masa atómica se representa por A mayúscula y el que indica el número atómico se representa por una Z mayúscula.
Únicamente ciertas combinaciones de Z y A forman núcleos estables: si hay demasiados neutrones, o demasiados pocos, el núcleo sufrirá más pronto o más tarde un cambio, una desintegración radiactiva, que la llevará a la estabilidad en uno o varios pasos. El grado de es inestabilidad se pone de manifiesto por la energía emitida en la desintegración, así como en la velocidad de ésta. Tal velocidad de desintegración se mide por la vida media o período de semidesintegración, que es el tiempo necesario para que el número de átomos inicialmente presente se reduzca a la mitad por desintegración. Los tiempos de semidesintegración varían desde fracciones de segundo hasta millones de años. La desintegración radiactiva puede tener lugar de varias maneras diferentes.
 Para ver el gráfico seleccione la opción "Descargar" del menú superior

Desintegración Alfa

Un núcleo demasiado pesado para ser estable expulsa un grupo compacto (una partícula alfa), consistente en dos protones, y dos neutrones, que deja al núcleo con una A cuatro unidades menor y una Z dos unidades más bajas, es decir, dos pasos atrás en la tabla periódica. Estructuralmente una partícula alfa es idéntica a un núcleo de Helio – 4. la desintegración alfa es frecuente entre los elementos naturales más pesados (uranio, polonio, y radio, por ejemplo), pero no conduce directamente a núcleos estables: antes se producen isótopos intermedios que experimentan nuevas desintegraciones.
Las partículas alfa tienen una energía de hasta 5.000.000 de electrovoltios, pero son tan voluminosas que sólo pueden atravesar unos 25 mm de aire y se ven detenidas por una simple hoja de papel o por la parte más externa de la piel humana. Sin embargo, por esta misma razón produce serios daños en el interior del cuerpo humano cuando son emitidas por materiales alfa – activos absorbidos inadvertidamente como polvo transportado por el aire, o través de heridas contaminadas. Los emisores naturales de partículas alfa, como el radio, son de uso práctico limitado, ahora que se dispone libremente de gran variedad de radioisótopos artificiales. No obstante, el uranio y su subproducto artificial, el plutonio (otro emisor alfa), son ambos fisibles y, por lo tanto, de importancia primordial en la producción de energía nuclear

Desintegración Beta

                                           Es un núcleo con demasiados neutrones, uno de estos puede transformarse en un protón más un electrón, que es expulsado en el núcleo. El electrón emitido de esta forma recibe el nombre de partícula β. El núcleo queda con una carga positiva más, con su Z en una unidad más alta y, por lo tanto, un lugar más arriba en la tabla periódica. Las partículas β son capaces de penetrar varios metros de aire, unos cuantos centímetros de tejido corporal o varios mm de metal o de plástico (que proporcionan un apantallamiento adecuado). Puede producir serias quemaduras superficiales o importantes daños internos sobre todo si son emitidos dentro del cuerpo durante periodos de tiempo algo prolongados. La desintegración β es el tipo mas frecuente de desintegración radiactiva tanto entre los isótopos artificiales como entre productos radiactivos procedentes de la desintegración alfa. Algunos de los radioisótopos artificiales obtenidos en aceleradores de partículas o separados en los productos de fisión formados en reactores nucleares tienen pocos neutrones, en lugar de demasiados. Estos se desintegran emitiendo positrones (partículas como los electrones pero cargadas positivamente), que se neutralizan casi de inmediato con los electrones ordinarios para producir una "radiación de aniquilación", con las cualidades de los rayos gamma. Los isótopos que emiten positrones tienen aplicaciones en diagnosis médica

Emisión de rayos gamma

Esta emisión tiene lugar siempre que la desintegración beta no ha disipado suficiente energía para dar completa estabilidad al núcleo. Muchos isótopos naturales y artificiales con actividad alfa y beta son también emisores de rayos gamma. Los rayos gamma son una radiación electromagnética como los rayos X. Su intensidad se reduce al pasar a través de la materia en un grado que dependerá de su propia energía y de la densidad física del material absorbente. Los rayos gamma no son detenidos como las partículas alfa o beta, ni existen materiales opacos a ellos, como en el caso de la luz. Pueden necesitarse entre 5 y 25 centímetros de plomo o hasta 3 m de hormigón para conseguir una protección adecuada contra los rayos gamma de alta energía. El exceso de radiación gamma externa puede causar graves daños internos al organismo humano, peor no puede inducir radioactividad en él, ni en ningún otro material.
Otras formas de desintegración radiactiva son la transformación interna, en al que una reorganización interior del núcleo da como resultado la emisión de rayos X, o la captura de electrones, en la que un núcleo con demasiados protones captura un electrón de una orbita interna del propio átomo, convirtiendo así un protón en un neutrón, con emisión de rayos X y descenso de un lugar en la tabla periódica los núcleos de uranio – 235 y del U – 238 (emisores de partículas alfa), se desintegran alguna que otra vez por fisión nuclear espontánea, produciendo cualquier par de una gama de posibles núcleos de fisión, además de neutrones libres. El radioisótopo artificial californio – 252 se desintegra exclusivamente por fisión espontánea, proporcionando u8na fuente utilizable de neutrones. Unos pocos isótopos producto de fisión, en particular el yodo – 122, se desintegran con emisión retardada de neutrones poco después de haber sido formados y desempeñan un importante papel en el control de reactores.
La forma de desintegración, los tiempos de semidesintegración y las energías de emisión (energía máximas en el caso de partículas alfa y beta) son, en conjunto, características especificas que distinguen a un isótopo determinado y se pueden emplear para la identificación y medida de los propios emisores y, por tanto, de sus precursores, mediante la técnica de análisis por activación


VELOCIDAD DE DESINTEGRACIÓN

La velocidad de desintegración de un isótopo puede caracterizarse mediante una constante denominada período de semidesintegración, que se define como el espacio de tiempo que debe transcurrir que una determinada masa de isótopo se hayan desintegrado la mitad de los átomos que la forman. Esta constante tiene carácter estadístico, ya que es imposible predecir en que momento se va a producir la desintegración de un determinado átomo.
Otra constante que también se utiliza es la vida media que se define como el valor medio de la vida de los átomos del isótopo. No deben confundirse ambos conceptos, ya que ha menudo se utilizan de forma errónea.


FISIÓN NUCLEAR

Se entiende por fisión, la división de un núcleo muy pesado en un par de núcleos de masa próxima a 60, proceso en el cual se libera gran cantidad de energía
A finales de 1938, O.Hann y F. Strassmann descubrieron en uranio bombardeado con neutrones, la presencia del radioisótopo 139Ba, formado necesariamente por escisión del núcleo de uranio. Este proceso se denominó Fisión nuclear.
Según el modelo de la gota líquida, la fisión se produce porque al captar un neutrón, el núcleo oscila y se deforma, con lo que pierde su forma esférica adquiriendo la figura de un elipsoide entre cuyos extremos se produce una repulsión electrostática que puede llegar a provocar la rotura del núcleo pesado en dos fragmentos. En el caso del uranio-235, los fragmentos que se forman son núcleos de masas próximas a 95, el menor, y a 139, el mayor. Una reacción de fisión típica es:



En palabras sencillas, fusión nuclear es la unión de dos núcleos livianos acompañada por una liberación de energía.
Además de en la fisión de núcleos de átomos pesados, también se libera energía en la formación de núcleos intermedios a partir de núcleos muy ligeros, por ejemplo, de deuterio, 21H, y de tritio, 31H. Este proceso se conoce como fusión nuclear.
Una reacción de fusión típica es la unión de un núcleo del deuterio y uno de tritio para dar un núcleo de Helio y un neutrón:
2 3 4 1
1 1 2 0
Por gramo de combustible, esta reacción comporta la liberación de tres o cuatro veces más energía que una reacción de fisión. La energía liberada corresponde a la diferencia de masa entre el núcleo formado y sus constituyentes.
Las reacciones de fusión son las responsables de la energía que emiten el Sol y las estrellas, en cuyo interior la temperatura es del orden de 20 millones de grados y los átomos de hidrógeno están completamente ionizados. La energía emitida por el Sol equivale a la pérdida de una masa de 4,3 millones de toneladas en un segundo.
A diferencia de lo que ocurre con la fisión, los productos que se forman en las reacciones de fusión no son radiactivos y, además, los isótopos ligeros necesarios para la fusión son comunes (por ejemplo el deuterio existe en el mar), de ahí las grandes esperanzas depositadas en llegar a producir energía a partir de un proceso de fusión. El problema más importante planteado estriba en que los núcleos que se fusionan deben poseer suficiente energía para vencer las fuerzas electrostáticas de repulsión, lo que exige temperaturas de millones de grados. El material se hallará así en estado de plasma, y este plasma debe confinarse durante un tiempo suficientemente largo en un volumen no muy grande para que se produzca una reacción auto sostenida.
En las bombas termonucleares (bombas de hidrógeno) la temperatura necesaria se alcanza mediante la explosión de una o más bombas atómicas que actúan como detonantes de la fusión subsiguiente.




El trazado isotópico en biología y en medicina

Los diferentes isótopos de un elemento tienen las mismas propiedades químicas. El reemplazo de uno por otro en una molécula no modifica, por consiguiente, la función de la misma. Sin embargo, la radiación emitida permite detectarla, localizarla, seguir su movimiento e, incluso, dosificarla a distancia. El trazado isotópico ha permitido estudiar así, sin perturbarlo, el funcionamiento de todo lo que tiene vida, de la célula al organismo entero. En biología, numerosos adelantos realizados en el transcurso de la segunda mitad del siglo XX están vinculados a la utilización de la radioactividad: funcionamiento del genoma (soporte de la herencia), metabolismo de la célula, fotosíntesis, transmisión de mensajes químicos (hormonas, neurotransmisores) en el organismo.
Los isótopos radioactivos se utilizan en la medicina nuclear, principalmente en las imágenes médicas, para estudiar el modo de acción de los medicamentos, entender el funcionamiento del cerebro, detectar una anomalía cardiaca, descubrir las metástasis cancerosas.

Las radiaciones y la radioterapia

Las radiaciones ionizantes pueden destruir preferentemente las células tumorales y constituyen una terapéutica eficaz contra el cáncer, la radioterapia, que fue una de las primeras aplicaciones del descubrimiento de la radioactividad.
En Francia, entre el 40 y el 50% de los cánceres se tratan por radioterapia, a menudo asociada a la quimioterapia o la cirugía. La radioactividad permite curar un gran número de personas cada año.
Las diferentes formas de radioterapia:
  • La curioterapia, utiliza pequeñas fuentes radioactivas (hilos de platino - iridio, granos de cesio) colocados cerca del tumor.
  • La tele radioterapia, consiste en concentrar en los tumores la radiación emitida por una fuente exterior.
  • La inmunorradioterapia, utiliza vectores radio marcados cuyos isótopos reconocen específicamente los tumores a los que se fijan para destruirlos.
La esterilización

La irradiación es un medio privilegiado para destruir en frío los microorganismos: hongos, bacterias, virus... Por esta razón, existen numerosas aplicaciones para la esterilización de los objetos, especialmente para el material médico-quirúrgico.

La protección de las obras de arte

El tratamiento mediante rayos gamma permite eliminar los hongos, larvas, insectos o bacterias alojados en el interior de los objetos a fin de protegerlos de la degradación. Esta técnica se utiliza en el tratamiento de conservación y de restauración de objetos de arte, de etnología, de arqueología.

La elaboración de materiales

La irradiación provoca, en determinadas condiciones, reacciones químicas que permiten la elaboración de materiales más ligeros y más resistentes, como aislantes, cables eléctricos, envolventes termo retractables, prótesis, etc.

La radiografía industrial X o g

Consiste en registrar la imagen de la perturbación de un haz de rayos X o g provocada por un objeto. Permite localizar los fallos, por ejemplo, en las soldaduras, sin destruir los materiales.

Los detectores de fugas y los indicadores de nivel
La introducción de un radioelemento en un circuito permite seguir los desplazamientos de un fluido, detectar fugas en las presas o canalizaciones subterráneas.
El nivel de un líquido dentro de un depósito, el espesor de una chapa o de un cartón en curso de su fabricación, la densidad de un producto químico dentro de una cuba... pueden conocerse utilizando indicadores radioactivos


nube radiactiva




Alarma mundial por la nube radiactiva


El temor a una crisis nuclear de dimensiones catastróficas creció ayer a pasos agigantados en el mundo luego de que se multiplicaron en Japón las explosiones en una planta atómica dañada por el terremoto y la nube contaminante alcanzó la ciudad de Tokio, lo que elevó peligrosamente el nivel de radiactividad en el archipiélago.
En el marco de una situación que Europa calificó como "fuera de control" y "apocalíptica", la seguridad atómica de Japón hoy depende de 50 técnicos y bomberos que luchaban contra reloj para evitar una nueva fuga radiactiva en la central de Fukushima I (ver aparte). Mientras tanto, Francia elevó a 6 la alarma atómica en Japón (en una escala en la que 7 es el máximo, índice sólo alcanzado por Chernobyl).
El primer ministro de Japón, Naoto Kan, pidió a los habitantes en un radio de 30 kilómetros en torno a la central, una población de 140.000 personas, que permanezcan en sus hogares, en medio de la crisis nuclear más grave desde el desastre de Chernobyl, en Ucrania, en 1986. "La posibilidad de una mayor filtración radiactiva está aumentando", dijo un sombrío Kan en un discurso a la nación.
La radiactividad alcanzó un nivel alarmante cerca de la planta de Fukushima I. "Hablamos ahora de una exposición a radiación que puede poner en peligro la salud humana", dijo el vocero gubernamental Yukio Edano. En algunas zonas de la central se midió una radiación de 400 milisievert, un valor que supera el límite impuesto para un año en 400 veces.
No obstante, funcionarios en Tokio -240 kilómetros al sur de la planta- dijeron que la radiación en la capital anoche era 10 veces superior a la normal, pero negaron que este nivel fuera una amenaza para la salud humana.
A pesar de que los toxicólogos informaron que el nivel de radiación actual no era una amenaza directa, el pánico se apoderó de parte de los habitantes de Japón, que intentaban abandonar el archipiélago y formaban largas filas para adquirir productos básicos y pastillas de yodo, que podrían actuar sobre los efectos de la radiación.
En la ciudad de Fukushima, 80 kilómetros al noroeste de la central, "hay muchos chicos enfermos, las farmacias están cerradas (...). Todos quieren irse, pero no hay nafta", contó Kaoru Hashimoto, un ama de casa de 36 años que vive en esa localidad.












pdt____
esperamos que les hayga gustado sobre todo a usted profesora rosa
y porfavor ayudenos porfavor dejenos mas trabajos si kiere por favor ayudenos a aprobar el curso

haaa mire los ultimos videos(importante)
recuerdo